885 research outputs found

    Multiband effective bond-orbital model for nitride semiconductors with wurtzite structure

    Full text link
    A multiband empirical tight-binding model for group-III-nitride semiconductors with a wurtzite structure has been developed and applied to both bulk systems and embedded quantum dots. As a minimal basis set we assume one s-orbital and three p-orbitals, localized in the unit cell of the hexagonal Bravais lattice, from which one conduction band and three valence bands are formed. Non-vanishing matrix elements up to second nearest neighbors are taken into account. These matrix elements are determined so that the resulting tight-binding band structure reproduces the known Gamma-point parameters, which are also used in recent kp-treatments. Furthermore, the tight-binding band structure can also be fitted to the band energies at other special symmetry points of the Brillouin zone boundary, known from experiment or from first-principle calculations. In this paper, we describe details of the parametrization and present the resulting tight-binding band structures of bulk GaN, AlN, and InN with a wurtzite structure. As a first application to nanostructures, we present results for the single-particle electronic properties of lens-shaped InN quantum dots embedded in a GaN matrix.Comment: 10 pages, 5 figures, two supplementary file

    A discontinuous Galerkin method for the Vlasov-Poisson system

    Full text link
    A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function and weakly enforces continuity of the electric field through mesh interfaces and boundary conditions. The performance of the method is investigated by computing several examples and error estimates associated system's approximation are stated. In particular, computed results are benchmarked against established theoretical results for linear advection and the phenomenon of linear Landau damping for both the Maxwell and Lorentz distributions. Moreover, two nonlinear problems are considered: nonlinear Landau damping and a version of the two-stream instability are computed. For the latter, fine scale details of the resulting long-time BGK-like state are presented. Conservation laws are examined and various comparisons to theory are made. The results obtained demonstrate that the discontinuous Galerkin method is a viable option for integrating the Vlasov-Poisson system.Comment: To appear in Journal for Computational Physics, 2011. 63 pages, 86 figure

    Lower bound for electron spin entanglement from beamsplitter current correlations

    Full text link
    We determine a lower bound for the entanglement of pairs of electron spins injected into a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities, the zero-frequency current correlators (shot noise power or cross-correlators) after transmission through an electronic beam splitter. The effect of spin relaxation (T_1 processes) and decoherence (T_2 processes) during the ballistic coherent transmission of the carriers in the wires is taken into account within Bloch theory. The presence of a variable inhomogeneous magnetic field allows the determination of a useful lower bound for the entanglement of arbitrary entangled states. The decrease in entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source (entangler) and the relaxation (T_1) and decoherence (T_2) times can be determined.Comment: 4 pages, 3 figure

    Optical readout of charge and spin in a self-assembled quantum dot in a strong magnetic field

    Full text link
    We present a theory and experiment demonstrating optical readout of charge and spin in a single InAs/GaAs self-assembled quantum dot. By applying a magnetic field we create the filling factor 2 quantum Hall singlet phase of the charged exciton. Increasing or decreasing the magnetic field leads to electronic spin-flip transitions and increasing spin polarization. The increasing total spin of electrons appears as a manifold of closely spaced emission lines, while spin flips appear as discontinuities of emission lines. The number of multiplets and discontinuities measures the number of carriers and their spin. We present a complete analysis of the emission spectrum of a single quantum dot with N=4 electrons and a single hole, calculated and measured in magnetic fields up to 23 Tesla.Comment: 9 pages, 3 figures, submitted to Europhysics Letter

    Quantitative Topographical Characterization of Thermally Sprayed Coatings by Optical Microscopy

    Get PDF
    Topography measurements and roughness calculations for different rough surfaces (Rugotest surface comparator and thermally sprayed coatings) are presented. The surfaces are measured with a novel quantitative topography measurement technique based on optical stereomicroscopy and a comparison is made with established scanning stylus and optical profilometers. The results show that for most cases the different methods yield similar results. Stereomicroscopy is therefore a valuable method for topographical investigations in both quality control and research. On the other hand, the method based on optical microscopy demands a careful optimization of the experimental settings like the magnification and the illumination to achieve satisfactory result

    Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems

    Full text link
    A microscopic theory is used to study the optical properties of semiconductor quantum dots. The dephasing of a coherent excitation and line-shifts of the interband transitions due to carrier-carrier Coulomb interaction and carrier-phonon interaction are determined from a quantum kinetic treatment of correlation processes. We investigate the density dependence of both mechanisms and clarify the importance of various dephasing channels involving the localized and delocalized states of the system.Comment: 12 pages, 10 figure
    • …
    corecore